您的位置::长铃机械网 >> 启智玩具

最火光电化学蚀刻可用于制造氮化镓中高纵横比深阿勒泰桌上车床速腾配件庆典公司旋振筛

时间:2022年09月15日

光电化学蚀刻可用于制造氮化镓中高纵横比深沟槽

日本SCIOCS有限公司和法政大学曾报导了在氮化镓(GaN)中利用光电化学(PEC)蚀刻深层高纵横比沟槽的进展[Fumimasa Horikiri et al, Appl. Phys. Express, vol11, p091001, 2018]。 该团队希望该技术能够三角阀在高场中能够利用GaN的高击穿场和高电子迁移速度为电力电子技术开辟新的器件结构。

具有p型和n型材料列的“超结”结构是需要通过深度蚀刻技术来实现的。当这种结构结合到横向场效应晶体管中时,击穿电压能够达到10kV以上。这种超结漂移区和其他深蚀刻结构也会对垂直器件有益。对于激光二极管,晶片切割应用和微机电系统(MEMS)的脊形制造,同样需要高质量的快速蚀刻速率工艺。目前, PEC已经应用于台面,栅极凹陷和垂直腔面发射激光器(VCSEL)制造工艺上。

一般情况下,我们通过干等离子体蚀刻(如电感耦合等离子体反应离子蚀刻(ICP——RIE))来实现材料表面的深度蚀刻。 但这将进一步引起在GaN和掩模材料之间低干蚀刻选择性的问题。 高质量的蚀刻技术往往很慢,从而缩小了深层结构的范围。

研究人员通过空隙辅助分离蓝宝石中的n型氢化物气相外延(HV接插件PE)材料制备了2英寸自支撑GaN衬底(Mike Cooke, Semiconductor Today, p80, 另外一方面大量真实财富被过度消耗June/July 2018] —— a technique developed by SCIOCS)。此时晶片的位错密度在2×10 6cm——2至5×10 6c红瓷m——2的范围内。

通过金属 —— 有机气相外延法使二极管层生长 ,形成5.8μmn——GaN肖特基势垒二极管、2μmn+型GaN、10μmn——型GaN,500nm p因此——型GaN和20nm p + 型GaN p——n二极管。 将p——n二极管材料在850℃,氮气氛围中退火30分钟以活化p型层中的镁受体。 退火的效果是驱除钝化受体的氢原子。

用于PEC蚀刻的掩模材料(图1)是钛。 PEC蚀刻通过“光辅助阳极氧化”实现蚀刻GaN。 该工艺过程中,GaN释放Ga3 +,其正电荷来自GaN /电解质阳极界面处的紫外(U油缸行程:250mm;V)光产生的空穴。 通过在GaN晶片的背面上的欧姆接触和作为阴极的铂反电极之间建立的PEC的电路去除电子。 蚀刻电位为1V; 紫外线辐射由汞 —— 氙灯提供,垂直入射9.0mW / cm2。 辐射和蚀刻电位以脉冲模式操作,电位为0.6占空比。

电解质中的氢氧根离子,其与Ga3 +反应,形成Ga2O3。其中电解质溶这类取材木浆的新材料的重量唯一钢材的5分之1液中的0.01M氢氧化钠和1%Triton X——100作为润湿剂,以降低表面张铝拉钉力并有助于除泡。

这种PEC刻蚀工艺实现了24.9nm /分钟的平滑表面速率,与无损伤干法蚀刻技术效果基本相同。如果将PEC速率提高到175.5nm /分钟,则会导致表面粗糙,这类高速PEC可用于晶圆切割。

如果我们选择用由90μm直径圆点组成的50nm厚的钛掩模,通过PEC蚀刻至20μm的深度,那么选择性将大于400(20μm/ 50nm), 侧蚀小于1μm。

在沟槽蚀刻的实验中,达到的深度是由电流密度控制的,而不是沿GaN晶格的m轴或a轴的掩模取向。 短宽度孔径掩模的沟槽蚀刻速率在约30μm深度处减慢。 研究人员认为,这是由于紫外线辐射难以到达沟槽底部的蚀刻前沿。 他们补充说,相干的紫外光源可能有助于深沟槽蚀刻。

实线,虚线和虚线对应于基于PEC与沟槽宽度的纵横比的估计,其包括在两个壁中的0.7μm量级的侧蚀。 填充符号显示实验结果。

由图2可以看出实现的最大沟槽纵横比为7.3(3.3μm宽度和24.3μm深度)。 该团队说:“这种纵横比和蚀刻深度与ICP——RIE制造的SiC沟槽的最佳结果相当,表明PEC刻蚀的优势不仅在于光学和电子器件的制造,而且在于制造GaN——MEMS,如晶圆,隔膜,微流体通道和光栅的通孔。”

广州治疗哪家医院好
广东深圳整形三级医院
蚌埠治疗哪家医院好
重庆神经三甲医院
友情链接